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Abstract: While the balanced chemical equations for a multireaction system are generally not unique, the 
minimum number of independent equations, R, is a characteristic property of the system. Deleting one 
nonspectator species from the system leads to a system with R reduced by one. In this way each system can be 
reduced to a single-reaction system and ultimately to a no-reaction system. The least number of chemical species 
that can be deleted to obtain a no-reaction system equals R. Every multireaction system, therefore, can be 
reduced to a number of single-reaction equations which can be balanced by any one of the standard techniques. 
Some examples are given where balancing by inspection is employed. 

The LabWorks learning system is an effective, inexpensive 
combination of hardware and software that enables students to 
obtain and analyze experimental data in general chemistry 
laboratories [1, 2].The LabWorks interface was designed to be 
controlled by a personal computer (PC), but it has been shown 
that a handheld graphing calculator can also control the 
LabWorks interface [3].This article describes the process of 
programming the calculator to control the LabWorks interface. 

HP 48G and HP 48GX calculators have the ability to 
communicate with the LabWorks II interface via serial link. 
Like PCs, the HP 48 can send commands and receive 
LabWorks-acquired data. The data can also be stored, 
processed, and displayed in both graphical and text formats. 
The calculators occupy much less desk space than PCs and, at 
$100 per unit, are much less expensive to purchase and 
maintain. 

Establishing Communications 

Hewlett Packard manufactures a cable that enables its HP 48 
calculators to connect to PCs via a 9-pin RS-232 serial port. 
This cable can be used to attach the calculator to the 
LabWorks II interface. Because the interface is also designed 
to communicate with a PC, a null-modem adapter is necessary 
to allow the calculator and interface to communicate with each 
other. 

After connecting the calculator and LabWorks interface, it is 
necessary to confirm that the calculator and interface can 
communicate. SCI Technologies assisted with this part of the 
project by supplying the machine-level command codes for the 
LabWorks interface. Using this information, the calculator was 
programmed to send a series of commands to the interface, and 
then receive incoming data. The communications protocol for 
the LabWorks II interface is: 9600 baud, 0 parity bit, no stop 
bit. 

All data communicated between the calculator and the 
interface are in the form of ASCII characters. ASCII stands for 
American Standard Code for Information Interchange, a binary 
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number-to-letter conversion code. In this system, upper- and 
lower-case letters, numerals, and symbols all have assigned 
binary values [4]. Both commands and data are exchanged 
between the interface and the calculator using this encoding 
scheme. 

The HP 48 uses two commands, XMIT and SRECV, to 
transmit and receive data [5]. When communication is 
successful, a 1 is displayed in the calculator window after both 
XMIT and SRECV. Another HP 48 command, DROP, 
removes these numbers from the HP 48 display. A very simple 
program in which the calculator checks for the presence of a 
working interface is shown in HP 48 Program 1 (Figure 1). All 
HP 48 programs discussed in this article are adapted from 
computer code that is copyrighted by SCI Technologies. 

When the LabWorks interface receives an ASCII B 
character, it returns an ASCII U, and this character is shown in 
the calculator display. 

Making Digital Measurements 

Digital measurements are the simplest types of 
measurements the LabWorks interface makes because these 
data do not use the interface’s analog-to-digital converter 
(ADC). Digital counter and time data are examples of digital 
measurements. The LabWorks counter is a 16-bit device and 
its data are sent using two characters. In this case, each byte of 
data is converted to a binary number, the two numbers are 
combined, and the result is converted to an integer. HP 48 
Program 2 (Figure 2) shows how the HP 48 obtains a value of 
15,729 from the LabWorks interface counter. 

The first line of the program sets the maximum size of the 
binary numbers to 16 bits, and no value is returned to 
acknowledge this action. In lines 2 and 3, the calculator sends 
a “C” character to request a counter reading, and receives the 
first data character. The DROP command after each XMIT and 
SRECV removes the successful communications 
acknowledgement from the HP 48’s data stack (vide infra). 
Line 4 converts the first data character to a decimal number, 
and line 5 converts the decimal to binary. It would be more 
efficient to convert the character directly to binary, but that is 
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Line no.* HP 48 Commands HP 48 Displayed Result 

 1 "B" XMIT DROP  
 2 1 SRECV DROP “U” 

*HP 48 programs do not use numbered lines. The line numbers listed 
here are for reference purposes only. 

 
Figure 1. HP 48 program 1. Check for working labworks interface. 

Line no. HP 48 Commands HP 48 Displayed Result 

 1 16 STWS  
 2 "C" XMIT DROP  
 3 1 SRECV DROP “q” 
 4 NUM 113 

 5 R→ B  01110001 

 6 1 SRECV DROP “=” 
 7 NUM 61 

 8  R→ B 00111101 

 9 1 8 START SL NEXT 0011110100000000 

10 OR 0011110101110001 

11 B → R 15,729 

 
Figure 2. HP 48 program 2. reading the labworks counter. 

not presently possible. The second data character is received in 
line 6, and it is converted to a decimal, and then to a binary 
number, in lines 7 and 8. Line 9 shifts the second binary 
number eight digits to the left. 

Line 10 combines the binary number generated in line 5 
with the left-shifted binary in line 9. The result is a 16-bit 
binary number, which is then converted to the decimal counter 
value. Finally, line 11 converts the binary number to an 
integer. 

Reading the Analog-to-Digital Converter 

Obtaining data from the LabWorks interface’s ADC is more 
complicated than reading digital information. The ADC takes 
an analog signal, such as from a thermistor, and converts it to a 
12-bit binary number. The HP 48, like the counter, receives 
this number in two bytes, but only 12 bits of the incoming data 
are significant. The HP 48 uses a subroutine called “ADC” that 
combines two data bytes that the interface has obtained and 
sent to the calculator. This subroutine is part of any analog 
data acquisition. 

The ADC subroutine requires that two numbers be placed 
on the HP 48’s number stack. The stack is memory that holds 
numbers waiting for mathematical operations. The size of the 
stack is limited only by calculator memory, but only the last 
four numbers on the stack are displayed. HP 48 Program 3 
(Figure 3) starts with two data bytes obtained from an analog 
sensor, such as a pH probe, and shows how the signal from the 
probe is converted to a digital value. Note: The two values on 
the HP 48 stack were ASCII characters sent from the interface 
that have already been converted to integers. 

The first line of the program sets the maximum size of the 
binary numbers to 12 bits to accommodate the 12-bit ADC. No 
value is returned to the calculator display to acknowledge this 
action. In lines 2 and 3 the number in level 1 of the stack is 
converted to a binary number and shifted left four bits. Line 4 
switches stack locations, temporarily storing the shifted binary 
value, and allowing the 143 value to be manipulated. Lines 5 
and 6 convert 143 to a binary value, then shift it four bits to 

the right. Four bits are lost during this right shift, but the lost 
data are meaningless because the ADC has 12-bit, not 16-bit, 
resolution. Finally, line 7 combines the two values on the stack 
using a binary OR command. 

Twos-Complement Arithmetic 

This conversion program returns integer values ranging 
from −2048 to +2047. The HP 48 command NEG in line 8 
takes the twos-complement of a binary number. The values 
obtained by the interface’s analog-to-digital converter use 
twos-complement binary arithmetic. This style of binary-to-
decimal conversion allows both positive and negative values to 
be converted. The most significant binary digit is a sign bit: a 1 
for a negative number, and a 0 for a positive number. All other 
bits in the word give positive integer values [6]. For example, 
a binary 1011 is equivalent to a decimal 11 (8 + 0 + 2 + 1), but 
using twos-complement, this binary number is −5 (−8 + 0 + 2 
+ 1). Finally, line 9 in HP 48 Program 3 converts this binary 
number to a real number. 

Interface Calibration Constants 

The values obtained from the ADC need to be converted 
again in order to be meaningful. For example, an electrical 
current reading obtained from the ADC is converted to a 
digital form, but these digital data are not accurate until 
operated on by a calibration routine. 

The necessary calibration constants are stored in the 
LabWorks interface in a three-dimensional array. The 
calibration values reside in a 51 × 8 array; four redundant 
copies of this array exist. The array is stored in the interface’s 
erasable, programmable, read-only memory (EPROM). When 
the computer version of LabWorks begins, this array is copied 
into computer memory. This process was extremely difficult to 
duplicate using the HP 48. Calibration constants were 
therefore empirically derived and stored as variables in 
calculator memory. 

Using the HP 48 to Read Electric Current 

When the LabWorks interface reads electric current, its 
input differs from other devices using the ADC. This device 
sends a different set of values to the HP 48 than do the other 
ADC devices in the interface. Because the electrical current 
amplifier is autoranging, three data bytes are sent to the HP 48, 
rather than the normal two. The third data byte is the current 
range code that tells the calculator the power of ten that needs 
to be applied to the data. 

The command to read current from the interface is a single 
byte with bit 8 set to a value of 1. Bit 0 selects whether to read 
I1 or I2, and bit 1 selects fast or average ADC reading. The 
values of the five intermediate bits are not read by the 
interface. Table 1 summarizes the different commands used to 
read current from the LabWorks interface. 

The subroutine shown in HP 48 Program 4 (Figure 4), called 
I1SUB, is used with all HP 48 programs that need data from 
the LabWorks interface’s I1 input. The subroutine calls ADC 
to convert the interface’s analog-to-digital converter output to 
a real number. The SND command is a subroutine that 
combines CHR, XMIT, and DROP commands into a single 
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Line no. HP 48 Commands HP 48 Stack 1 HP 48 Stack 2 

1 12 STWS 234 143 

2  R→ B # 11101010b 143 

3 1 4 START SL NEXT  # 111010100000b 143 

4 SWAP 143 # 111010100000b 

5 R→ B # 10001111b # 111010100000b 

6 1 4 START SR NEXT # 1000b # 111010100000b 

7 OR # 111010101000b  
8 NEG # 101011000  
9 B → R 344  

 
Figure 3. HP 48 program 3. adc conversion subroutine. 

Line no. HP 48 Commands HP 48 Stack 1 HP 48 Stack 2 HP 48 Stack 3 

1 129 SND    
2 1 3 START 

 RCV NEXT 

24 234 143 

3  3 ROLLD 234 143 24 

4  ADC 344 24  
5  → x y     
6 CASE    
7 ‘x = = 0’ THEN  

 y ‘I’ STO END 
   

8 ‘x = = 8’ THEN y 
 10 / ‘I’ STO END 

   

9 ‘x = = 16’ THEN y 
100 / ‘I’ STO END 

   

10 ‘x = = 24’ THEN y 
1000 / ‘I’ STO END 

0.344   

11 END I 1.221 *  
‘I’ STO I 

0.420   

 
Figure 4. HP 48 program 4. Subroutine to read current from i1. 

Table 1. LabWorks Electric Current Reading Commands 

Decimal Value Binary Value Input ADC mode 

128 10000000 I 1 fast 
129 10000001 I 1 averaged 
130 10000010 I 2 fast 
131 10000011 I 2 averaged 

 
function. Likewise, RCV combines 1, SRECV, DROP, and 
NUM. 

Line 1 sends the command to read from one of the current 
inputs. This command reads the I1 input in the averaged mode. 
Line 2 receives the two data bytes and the current-range value 
from the interface. The possible current-range values sent by 
the interface are 0, 8, 16, and 24 for I1, and 0, 32, 64, and 96 
for I2. 

Line 3 moves the current-range byte from stack level 1 to 
stack level 3. The ADC subroutine is invoked in line 4 to 
convert the two data bytes, which are now on stack levels 1 
and 2, into a real number. Line 5 saves the converted ADC 
number and the current range value into local variables x 
and y. 

Lines 6 through 10 change the ADC number depending on 
the value of the current-range  value.  The CASE command 
executes only the necessary line and ignores the rest. The 
multiplicative factor in line 11 is an empirical constant to give 
the current a maximum value of 2048 microamperes. 

Advanced Experiment Control: Setting and Incrementing 
the DAC 

Along with acquiring data from the LabWorks interface, the 
HP 48 can also set and increment voltage values to the 
interface’s digital-to-analog converter (DAC). The DAC 
functions as an adjustable voltage source. The DAC can be set 
or changed in 1-mV increments from −2048 to +2047 mV. 

The process of sending values to the interface’s 12-bit DAC 
is fairly complicated. A command byte is sent to the interface, 
along with three data bytes. Four bits (one nibble) from each 
data byte are incorporated into a single 12-bit value. The HP 
48 accomplishes this process by taking an integer, converting 
it to a binary number, dividing  it into three parts, and sending 
these parts to the  interface. The program DAC1 (HP 48 
Program 5) (Figure 5) shows how the HP 48 sends a value of 
1000 mV to DAC1. 

Line 1 of this program takes an integer and sends it to a 
local variable, m. The value of the integer determines the value 
at which the DAC will be set. Incrementing or decrementing 
this integer will then increment or decrement the DAC. The 
relationship between m and the value of the DAC has been 
empirically determined to follow the equation 

 DAC value (in mV) = 1.2242 m − 2506.5 
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Line no. HP 48 Commands HP 48 Stack 1 HP 48 Stack 2 

1 2864 → m   
2 49 SND   
3 m R→ B #101100101101b  
4 15 R→ B #1111b #101100101101b 
5 AND #1101b  
6 B→ R SND   
7 m R→ B #101100101101b  
8 1 4 START SR NEXT #10110010b  
9 15 R→ B #1111b #10110010b 

10 AND #0010b  
11 B→ R SND   
12 m R→ B #101100101101b  
13 1 8 START SR NEXT #1011b  
14 B→ R SND   

 
Figure 5. HP 48 program 5. Sending 1000 mV to dac1. 

Using this equation, the DAC could be set to 0 mV by using 
an m value equal to 2047, or set to −1000 mV by making m 
equal to 1230.6. 

Line 2 sends a decimal 49 to the interface, which is the 
equivalent to an ASCII character 1, which is the interface 
command to set DAC1. The next three values sent to the 
interface will determine the value of the DAC. 

Lines 3 through 5 recall the variable m, convert it to a binary 
number, and isolate the last four bits using a bitwise AND 
function. This binary number is converted to a real number and 
sent to the interface in line 6. Lines 7 through 11 perform the 
same function, with the addition of shifting the binary number 
four places to the right and then performing the bitwise AND. 
This bit-shift isolates the center four bits so they may be 
converted to a real number and sent to the interface. Finally, 
lines 12 through 14 send the last four bits by shifting eight bits 
right, converting to a real number, and then sending this value 
to the interface. When the interface receives three data values 
after the 49, it sets the DAC to the appropriate value. 

Conclusions and Future Work 

Programming the HP 48 is not a simple task. Students can 
use a preprogrammed calculator to store and manipulate 
chemistry data, but incorporating student experiment design is 

presently beyond this system. Future effort can be devoted 
toward allowing students to choose experiment input, by way 
of a simple menu-driven interface. This system will become 
much more popular if the more widely used Texas Instruments 
calculators could be adapted to control the LabWorks 
interface. The main obstacle for TI-based control is this 
calculator’s proprietary communications protocol. Other 
devices such as handheld computers or palm-size PCs might 
also be programmed to control the LabWorks interface. 
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