
 Chem. Educator 1999, 4, 73–76 73

© 1999 Springer-Verlag New York, Inc., S1430-4171(99)02293-3, 10.1007/s00897990283a, 420073mm.pdf

Programming the HP 48 Calculator to Control the LabWorks Interface

Matthew E. Morgan,†* and John R. Amend‡

Department of Chemistry, U.S. Air Force Academy, Colorado Springs, Colorado,
morganme.dfc.usafa@usafa.af.mil and Department of Chemistry and Biochemistry, Montana State University-
Bozeman, Bozeman, MT 59717

Abstract: While the balanced chemical equations for a multireaction system are generally not unique, the
minimum number of independent equations, R, is a characteristic property of the system. Deleting one
nonspectator species from the system leads to a system with R reduced by one. In this way each system can be
reduced to a single-reaction system and ultimately to a no-reaction system. The least number of chemical species
that can be deleted to obtain a no-reaction system equals R. Every multireaction system, therefore, can be
reduced to a number of single-reaction equations which can be balanced by any one of the standard techniques.
Some examples are given where balancing by inspection is employed.

The LabWorks learning system is an effective, inexpensive
combination of hardware and software that enables students to
obtain and analyze experimental data in general chemistry
laboratories [1, 2].The LabWorks interface was designed to be
controlled by a personal computer (PC), but it has been shown
that a handheld graphing calculator can also control the
LabWorks interface [3].This article describes the process of
programming the calculator to control the LabWorks interface.

HP 48G and HP 48GX calculators have the ability to
communicate with the LabWorks II interface via serial link.
Like PCs, the HP 48 can send commands and receive
LabWorks-acquired data. The data can also be stored,
processed, and displayed in both graphical and text formats.
The calculators occupy much less desk space than PCs and, at
$100 per unit, are much less expensive to purchase and
maintain.

Establishing Communications

Hewlett Packard manufactures a cable that enables its HP 48
calculators to connect to PCs via a 9-pin RS-232 serial port.
This cable can be used to attach the calculator to the
LabWorks II interface. Because the interface is also designed
to communicate with a PC, a null-modem adapter is necessary
to allow the calculator and interface to communicate with each
other.

After connecting the calculator and LabWorks interface, it is
necessary to confirm that the calculator and interface can
communicate. SCI Technologies assisted with this part of the
project by supplying the machine-level command codes for the
LabWorks interface. Using this information, the calculator was
programmed to send a series of commands to the interface, and
then receive incoming data. The communications protocol for
the LabWorks II interface is: 9600 baud, 0 parity bit, no stop
bit.

All data communicated between the calculator and the
interface are in the form of ASCII characters. ASCII stands for
American Standard Code for Information Interchange, a binary

* Address correspondence to this author.
† U.S. Air Force Academy
‡ Montana State University

number-to-letter conversion code. In this system, upper- and
lower-case letters, numerals, and symbols all have assigned
binary values [4]. Both commands and data are exchanged
between the interface and the calculator using this encoding
scheme.

The HP 48 uses two commands, XMIT and SRECV, to
transmit and receive data [5]. When communication is
successful, a 1 is displayed in the calculator window after both
XMIT and SRECV. Another HP 48 command, DROP,
removes these numbers from the HP 48 display. A very simple
program in which the calculator checks for the presence of a
working interface is shown in HP 48 Program 1 (Figure 1). All
HP 48 programs discussed in this article are adapted from
computer code that is copyrighted by SCI Technologies.

When the LabWorks interface receives an ASCII B
character, it returns an ASCII U, and this character is shown in
the calculator display.

Making Digital Measurements

Digital measurements are the simplest types of
measurements the LabWorks interface makes because these
data do not use the interface’s analog-to-digital converter
(ADC). Digital counter and time data are examples of digital
measurements. The LabWorks counter is a 16-bit device and
its data are sent using two characters. In this case, each byte of
data is converted to a binary number, the two numbers are
combined, and the result is converted to an integer. HP 48
Program 2 (Figure 2) shows how the HP 48 obtains a value of
15,729 from the LabWorks interface counter.

The first line of the program sets the maximum size of the
binary numbers to 16 bits, and no value is returned to
acknowledge this action. In lines 2 and 3, the calculator sends
a “C” character to request a counter reading, and receives the
first data character. The DROP command after each XMIT and
SRECV removes the successful communications
acknowledgement from the HP 48’s data stack (vide infra).
Line 4 converts the first data character to a decimal number,
and line 5 converts the decimal to binary. It would be more
efficient to convert the character directly to binary, but that is

74 Chem. Educator, Vol. 4, No. 2, 1999 Morgan et. al.

© 1999 Springer-Verlag New York, Inc., S1430-4171(99)02293-3, 10.1007/s00897990283a, 420073mm.pdf

Line no.* HP 48 Commands HP 48 Displayed Result

 1 "B" XMIT DROP
 2 1 SRECV DROP “U”

*HP 48 programs do not use numbered lines. The line numbers listed
here are for reference purposes only.

Figure 1. HP 48 program 1. Check for working labworks interface.

Line no. HP 48 Commands HP 48 Displayed Result

 1 16 STWS
 2 "C" XMIT DROP
 3 1 SRECV DROP “q”
 4 NUM 113

 5 R→ B 01110001

 6 1 SRECV DROP “=”
 7 NUM 61

 8 R→ B 00111101

 9 1 8 START SL NEXT 0011110100000000

10 OR 0011110101110001

11 B → R 15,729

Figure 2. HP 48 program 2. reading the labworks counter.

not presently possible. The second data character is received in
line 6, and it is converted to a decimal, and then to a binary
number, in lines 7 and 8. Line 9 shifts the second binary
number eight digits to the left.

Line 10 combines the binary number generated in line 5
with the left-shifted binary in line 9. The result is a 16-bit
binary number, which is then converted to the decimal counter
value. Finally, line 11 converts the binary number to an
integer.

Reading the Analog-to-Digital Converter

Obtaining data from the LabWorks interface’s ADC is more
complicated than reading digital information. The ADC takes
an analog signal, such as from a thermistor, and converts it to a
12-bit binary number. The HP 48, like the counter, receives
this number in two bytes, but only 12 bits of the incoming data
are significant. The HP 48 uses a subroutine called “ADC” that
combines two data bytes that the interface has obtained and
sent to the calculator. This subroutine is part of any analog
data acquisition.

The ADC subroutine requires that two numbers be placed
on the HP 48’s number stack. The stack is memory that holds
numbers waiting for mathematical operations. The size of the
stack is limited only by calculator memory, but only the last
four numbers on the stack are displayed. HP 48 Program 3
(Figure 3) starts with two data bytes obtained from an analog
sensor, such as a pH probe, and shows how the signal from the
probe is converted to a digital value. Note: The two values on
the HP 48 stack were ASCII characters sent from the interface
that have already been converted to integers.

The first line of the program sets the maximum size of the
binary numbers to 12 bits to accommodate the 12-bit ADC. No
value is returned to the calculator display to acknowledge this
action. In lines 2 and 3 the number in level 1 of the stack is
converted to a binary number and shifted left four bits. Line 4
switches stack locations, temporarily storing the shifted binary
value, and allowing the 143 value to be manipulated. Lines 5
and 6 convert 143 to a binary value, then shift it four bits to

the right. Four bits are lost during this right shift, but the lost
data are meaningless because the ADC has 12-bit, not 16-bit,
resolution. Finally, line 7 combines the two values on the stack
using a binary OR command.

Twos-Complement Arithmetic

This conversion program returns integer values ranging
from −2048 to +2047. The HP 48 command NEG in line 8
takes the twos-complement of a binary number. The values
obtained by the interface’s analog-to-digital converter use
twos-complement binary arithmetic. This style of binary-to-
decimal conversion allows both positive and negative values to
be converted. The most significant binary digit is a sign bit: a 1
for a negative number, and a 0 for a positive number. All other
bits in the word give positive integer values [6]. For example,
a binary 1011 is equivalent to a decimal 11 (8 + 0 + 2 + 1), but
using twos-complement, this binary number is −5 (−8 + 0 + 2
+ 1). Finally, line 9 in HP 48 Program 3 converts this binary
number to a real number.

Interface Calibration Constants

The values obtained from the ADC need to be converted
again in order to be meaningful. For example, an electrical
current reading obtained from the ADC is converted to a
digital form, but these digital data are not accurate until
operated on by a calibration routine.

The necessary calibration constants are stored in the
LabWorks interface in a three-dimensional array. The
calibration values reside in a 51 × 8 array; four redundant
copies of this array exist. The array is stored in the interface’s
erasable, programmable, read-only memory (EPROM). When
the computer version of LabWorks begins, this array is copied
into computer memory. This process was extremely difficult to
duplicate using the HP 48. Calibration constants were
therefore empirically derived and stored as variables in
calculator memory.

Using the HP 48 to Read Electric Current

When the LabWorks interface reads electric current, its
input differs from other devices using the ADC. This device
sends a different set of values to the HP 48 than do the other
ADC devices in the interface. Because the electrical current
amplifier is autoranging, three data bytes are sent to the HP 48,
rather than the normal two. The third data byte is the current
range code that tells the calculator the power of ten that needs
to be applied to the data.

The command to read current from the interface is a single
byte with bit 8 set to a value of 1. Bit 0 selects whether to read
I1 or I2, and bit 1 selects fast or average ADC reading. The
values of the five intermediate bits are not read by the
interface. Table 1 summarizes the different commands used to
read current from the LabWorks interface.

The subroutine shown in HP 48 Program 4 (Figure 4), called
I1SUB, is used with all HP 48 programs that need data from
the LabWorks interface’s I1 input. The subroutine calls ADC
to convert the interface’s analog-to-digital converter output to
a real number. The SND command is a subroutine that
combines CHR, XMIT, and DROP commands into a single

Programming the HP 48 Calculator to Control the LabWorks Interface Chem. Educator, Vol. 4, No. 2, 1999 75

© 1999 Springer-Verlag New York, Inc., S1430-4171(99)02293-3, 10.1007/s00897990283a, 420073mm.pdf

Line no. HP 48 Commands HP 48 Stack 1 HP 48 Stack 2

1 12 STWS 234 143

2 R→ B # 11101010b 143

3 1 4 START SL NEXT # 111010100000b 143

4 SWAP 143 # 111010100000b

5 R→ B # 10001111b # 111010100000b

6 1 4 START SR NEXT # 1000b # 111010100000b

7 OR # 111010101000b
8 NEG # 101011000
9 B → R 344

Figure 3. HP 48 program 3. adc conversion subroutine.

Line no. HP 48 Commands HP 48 Stack 1 HP 48 Stack 2 HP 48 Stack 3

1 129 SND
2 1 3 START

 RCV NEXT

24 234 143

3 3 ROLLD 234 143 24

4 ADC 344 24
5 → x y
6 CASE
7 ‘x = = 0’ THEN

 y ‘I’ STO END

8 ‘x = = 8’ THEN y
 10 / ‘I’ STO END

9 ‘x = = 16’ THEN y
100 / ‘I’ STO END

10 ‘x = = 24’ THEN y
1000 / ‘I’ STO END

0.344

11 END I 1.221 *
‘I’ STO I

0.420

Figure 4. HP 48 program 4. Subroutine to read current from i1.

Table 1. LabWorks Electric Current Reading Commands

Decimal Value Binary Value Input ADC mode

128 10000000 I 1 fast
129 10000001 I 1 averaged
130 10000010 I 2 fast
131 10000011 I 2 averaged

function. Likewise, RCV combines 1, SRECV, DROP, and
NUM.

Line 1 sends the command to read from one of the current
inputs. This command reads the I1 input in the averaged mode.
Line 2 receives the two data bytes and the current-range value
from the interface. The possible current-range values sent by
the interface are 0, 8, 16, and 24 for I1, and 0, 32, 64, and 96
for I2.

Line 3 moves the current-range byte from stack level 1 to
stack level 3. The ADC subroutine is invoked in line 4 to
convert the two data bytes, which are now on stack levels 1
and 2, into a real number. Line 5 saves the converted ADC
number and the current range value into local variables x
and y.

Lines 6 through 10 change the ADC number depending on
the value of the current-range value. The CASE command
executes only the necessary line and ignores the rest. The
multiplicative factor in line 11 is an empirical constant to give
the current a maximum value of 2048 microamperes.

Advanced Experiment Control: Setting and Incrementing
the DAC

Along with acquiring data from the LabWorks interface, the
HP 48 can also set and increment voltage values to the
interface’s digital-to-analog converter (DAC). The DAC
functions as an adjustable voltage source. The DAC can be set
or changed in 1-mV increments from −2048 to +2047 mV.

The process of sending values to the interface’s 12-bit DAC
is fairly complicated. A command byte is sent to the interface,
along with three data bytes. Four bits (one nibble) from each
data byte are incorporated into a single 12-bit value. The HP
48 accomplishes this process by taking an integer, converting
it to a binary number, dividing it into three parts, and sending
these parts to the interface. The program DAC1 (HP 48
Program 5) (Figure 5) shows how the HP 48 sends a value of
1000 mV to DAC1.

Line 1 of this program takes an integer and sends it to a
local variable, m. The value of the integer determines the value
at which the DAC will be set. Incrementing or decrementing
this integer will then increment or decrement the DAC. The
relationship between m and the value of the DAC has been
empirically determined to follow the equation

 DAC value (in mV) = 1.2242 m − 2506.5

76 Chem. Educator, Vol. 4, No. 2, 1999 Morgan et. al.

© 1999 Springer-Verlag New York, Inc., S1430-4171(99)02293-3, 10.1007/s00897990283a, 420073mm.pdf

Line no. HP 48 Commands HP 48 Stack 1 HP 48 Stack 2

1 2864 → m
2 49 SND
3 m R→ B #101100101101b
4 15 R→ B #1111b #101100101101b
5 AND #1101b
6 B→ R SND
7 m R→ B #101100101101b
8 1 4 START SR NEXT #10110010b
9 15 R→ B #1111b #10110010b

10 AND #0010b
11 B→ R SND
12 m R→ B #101100101101b
13 1 8 START SR NEXT #1011b
14 B→ R SND

Figure 5. HP 48 program 5. Sending 1000 mV to dac1.

Using this equation, the DAC could be set to 0 mV by using
an m value equal to 2047, or set to −1000 mV by making m
equal to 1230.6.

Line 2 sends a decimal 49 to the interface, which is the
equivalent to an ASCII character 1, which is the interface
command to set DAC1. The next three values sent to the
interface will determine the value of the DAC.

Lines 3 through 5 recall the variable m, convert it to a binary
number, and isolate the last four bits using a bitwise AND
function. This binary number is converted to a real number and
sent to the interface in line 6. Lines 7 through 11 perform the
same function, with the addition of shifting the binary number
four places to the right and then performing the bitwise AND.
This bit-shift isolates the center four bits so they may be
converted to a real number and sent to the interface. Finally,
lines 12 through 14 send the last four bits by shifting eight bits
right, converting to a real number, and then sending this value
to the interface. When the interface receives three data values
after the 49, it sets the DAC to the appropriate value.

Conclusions and Future Work

Programming the HP 48 is not a simple task. Students can
use a preprogrammed calculator to store and manipulate
chemistry data, but incorporating student experiment design is

presently beyond this system. Future effort can be devoted
toward allowing students to choose experiment input, by way
of a simple menu-driven interface. This system will become
much more popular if the more widely used Texas Instruments
calculators could be adapted to control the LabWorks
interface. The main obstacle for TI-based control is this
calculator’s proprietary communications protocol. Other
devices such as handheld computers or palm-size PCs might
also be programmed to control the LabWorks interface.

References and Notes

1. Amend, J. R.; Furstenau, R. P. Acad. Comp. 1989, 4(3), 20.

2. Amend, J. R.; Furstenau, R. P.; Tuicker, K. J. Chem. Educ. 1990,
67(7), 857.

3. Morgan, M. E.; Amend, J. R. Chem Educator 1998, 3(5) S1430-
4171 (98) 05253-6. Avail. URL: http://journals.springer-
ny.com/chedr.

4. Foster, L. S. C by Discovery, 2nd ed.; Scott/Jones: El Granada, CA,
1994; p 6.

5. HP 48G Series Advanced User’s Reference Manual; Hewlett-
Packard Corp.: Corvallis, OR, 1994.

6. Bronson, G.; Menconi, S. A First Book of C; West: Saint Paul, 1988.

